Jibo Zhang; Muqing Ren; Luqing Wang; Yilun Li; Boris I. Yakobson; James M. Tour
Index: 10.1002/adma.201707319
Full Text: HTML
An efficient metal‐free catalyst is presented for oxygen evolution and reduction based on oxidized laser‐induced graphene (LIG‐O). The oxidation of LIG by O2 plasma to form LIG‐O boosts its performance in the oxygen evolution reaction (OER), exhibiting a low onset potential of 260 mV with a low Tafel slope of 49 mV dec−1, as well as an increased activity for the oxygen reduction reaction. Additionally, LIG‐O shows unexpectedly high activity in catalyzing Li2O2 decomposition in Li‐O2 batteries. The overpotential upon charging is decreased from 1.01 V in LIG to 0.63 V in LIG‐O. The oxygen‐containing groups make essential contributions, not only by providing the active sites, but also by facilitating the adsorption of OER intermediates and lowering the activation energy.
Controlled Homoepitaxial Growth of Hybrid Perovskites
2018-04-02 [10.1002/adma.201705992] |
Phase Transition Control for High Performance Ruddlesden–Pop...
2018-04-02 [10.1002/adma.201707166] |
Few‐Layer GeAs Field‐Effect Transistors and Infrared Photode...
2018-04-02 [10.1002/adma.201705934] |
Porous Graphene Films with Unprecedented Elastomeric Scaffol...
2018-04-02 [10.1002/adma.201707025] |
Ultrafast Acoustofluidic Exfoliation of Stratified Crystals
2018-03-30 [10.1002/adma.201704756] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved