Dmitry L. Usanov, Alix I. Chan, Juan Pablo Maianti, David R. Liu
Index: 10.1038/s41557-018-0033-8
Full Text: HTML
DNA-encoded libraries have emerged as a widely used resource for the discovery of bioactive small molecules, and offer substantial advantages compared with conventional small-molecule libraries. Here, we have developed and streamlined multiple fundamental aspects of DNA-encoded and DNA-templated library synthesis methodology, including computational identification and experimental validation of a 20 × 20 × 20 × 80 set of orthogonal codons, chemical and computational tools for enhancing the structural diversity and drug-likeness of library members, a highly efficient polymerase-mediated template library assembly strategy, and library isolation and purification methods. We have integrated these improved methods to produce a second-generation DNA-templated library of 256,000 small-molecule macrocycles with improved drug-like physical properties. In vitro selection of this library for insulin-degrading enzyme affinity resulted in novel insulin-degrading enzyme inhibitors, including one of unusual potency and novel macrocycle stereochemistry (IC50 = 40 nM). Collectively, these developments enable DNA-templated small-molecule libraries to serve as more powerful, accessible, streamlined and cost-effective tools for bioactive small-molecule discovery.
O2−O2 and O2−N2 collision-induced absorption mechanisms unra...
2018-04-09 [10.1038/s41557-018-0015-x] |
A [4Fe–4S]-Fe(CO)(CN)-l-cysteine intermediate is the first o...
2018-04-09 [10.1038/s41557-018-0026-7] |
High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals
2018-04-02 [10.1038/s41557-018-0035-6] |
An artificial interphase enables reversible magnesium chemis...
2018-04-02 [10.1038/s41557-018-0019-6] |
A general strategy for synthesis of cyclophane-braced peptid...
2018-04-02 [10.1038/s41557-018-0006-y] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved