H. Rahimi, J.G. Schepers, W.Z. Shen, N. Ramos García, M.S. Schneider, D. Micallef, C.J. Simao Ferreira, E. Jost, L. Klein, I. Herráez
Index: 10.1016/j.renene.2018.03.018
Full Text: HTML
This work presents an investigation on different methods for the calculation of the angle of attack and the underlying induced velocity on wind turbine blades using data obtained from three-dimensional Computational Fluid Dynamics (CFD). Several methods are examined and their advantages, as well as shortcomings, are presented. The investigations are performed for two 10 MW reference wind turbines under axial inflow conditions, namely the turbines designed in the EU AVATAR and INNWIND.EU projects. The results show that the evaluated methods are in good agreement with each other at the mid-span, though some deviations are observed at the root and tip regions of the blades. This indicates that CFD results can be used for the calibration of induction modeling for Blade Element Momentum (BEM) tools. Moreover, using any of the proposed methods, it is possible to obtain airfoil characteristics for lift and drag coefficients as a function of the angle of attack.
|
In situ, one-step and co-electrodeposition of graphene suppo...
2018-04-10 [10.1016/j.renene.2018.04.040] |
|
Effectiveness of optimized control strategy and different hu...
2018-04-04 [10.1016/j.renene.2018.04.004] |
|
Quasi-Steady State Moving Boundary Reduced Order Model of Tw...
2018-04-03 [10.1016/j.renene.2018.04.008] |
|
Span80/Tween80 stabilized bio-oil-in-diesel microemulsion: f...
2018-04-03 [10.1016/j.renene.2018.04.010] |
|
A spatiotemporal universal model for the prediction of the g...
2018-04-03 [10.1016/j.renene.2018.04.005] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved