Zizhen Li, Xiangchao Meng, Zisheng Zhang
Index: 10.1016/j.jphotochemrev.2017.12.002
Full Text: HTML
MoS2-based photocatalysts attract wide attention as they possess a suitable band gap for visible-light harvesting, making it a promising earth-abundant photocatalyst for hydrogen production, environmental remediation, and photosynthesis. However, the rapid recombination of photogenerated electron-hole pairs, limited quantity of active edge sites, and difficult photocatalyst separation and recycling hinder the practical application of this material. In this review, recent development of MoS2-based photocatalysts in various photocatalytic applications is summarized. In addition, possible approaches to enhance photocatalytic activity and separate photocatalysts from reaction media are discussed to provide a future direction in highly efficient photocatalyst design.
Molecular aggregation of organic dyes controlled by the prop...
2018-03-20 [10.1016/j.jphotochemrev.2018.03.001] |
Conjugated macrocyclic materials with photoactivated optical...
2018-02-08 [10.1016/j.jphotochemrev.2018.02.001] |
Relations of exciton dynamics in quantum dots to photolumine...
2018-01-31 [10.1016/j.jphotochemrev.2018.01.004] |
Recent progress in development of photoacid generators
2018-01-31 [10.1016/j.jphotochemrev.2018.01.003] |
Molecular design for efficient singlet fission
2018-01-31 [10.1016/j.jphotochemrev.2018.01.002] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved