Billy Lam, Jihua Zhang, and Chunlei Guo
Index: 10.1364/OL.42.002870
Full Text: HTML
In this study, we develop a simple but highly effective technique that generates a continuously varying polarization within a laser beam. This is achieved by having orthogonal linear polarizations on each side of the beam. By simply focusing such a laser beam, we can attain a gradually and continuously changing polarization within the entire Rayleigh range due to diffraction. To demonstrate this polarization distribution, we apply this laser beam onto a metal surface and create a continuously rotating laser induced periodic surface structure pattern. This technique provides a very effective way to produce complex surface structures that may potentially find applications, such as polarization modulators and metasurfaces.
|
End-pumped Nd:YVO4 laser with reduced thermal lensing via th...
2017-07-20 [10.1364/OL.42.002910] |
|
Mid-infrared beam splitter for ultrashort pulses
2017-07-20 [10.1364/OL.42.002918] |
|
Piston alignment for a segmented-aperture imaging system by ...
2017-07-20 [10.1364/OL.42.002922] |
|
Controllable single-photon nonreciprocal propagation between...
2017-07-20 [10.1364/OL.42.002914] |
|
Anomalous dispersion engineering of co-sputtering Ag-AZO hyb...
2017-07-19 [10.1364/OL.42.002894] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2026 ChemSrc All Rights Reserved