Ting-Hui Xiao, Ziqiang Zhao, Wen Zhou, Mitsuru Takenaka, Hon Ki Tsang, Zhenzhou Cheng, and Keisuke Goda
Index: 10.1364/OL.42.002882
Full Text: HTML
The mid-infrared (MIR) spectral range holds significant potential for spectroscopic and sensing applications because it encompasses the fingerprint region that unveils the vibrational and rotational signatures of molecules. CMOS-compatible on-chip devices that can achieve strong light-matter interaction in the entire fingerprint region are considered a promising way for such applications, but remain unprecedented. Here we present an on-chip MIR germanium photonic crystal cavity that covers the entire fingerprint region. This is made possible by harnessing a homemade air-cladding germanium platform. Our MIR device creates a new avenue toward integrated nonlinear optics and on-chip biochemical sensing in the fingerprint region.
|
End-pumped Nd:YVO4 laser with reduced thermal lensing via th...
2017-07-20 [10.1364/OL.42.002910] |
|
Mid-infrared beam splitter for ultrashort pulses
2017-07-20 [10.1364/OL.42.002918] |
|
Piston alignment for a segmented-aperture imaging system by ...
2017-07-20 [10.1364/OL.42.002922] |
|
Controllable single-photon nonreciprocal propagation between...
2017-07-20 [10.1364/OL.42.002914] |
|
Anomalous dispersion engineering of co-sputtering Ag-AZO hyb...
2017-07-19 [10.1364/OL.42.002894] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2026 ChemSrc All Rights Reserved